WWW.METODICHKA.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Методические указания, пособия
 
Загрузка...

Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |

«О. А. КОЛМОГОРОВА ЗЕМЛЕВЕДЕНИЕ Учебное пособие Магнитогорск УДК 91 ББК Д820я73 Колмогорова О. А. Землеведение: учебное пособие. – Магнитогорск: ФГБОУ ВПО «МГТУ им. Г. И. Носова», 2015. ...»

-- [ Страница 4 ] --

Антициклон – противоположность циклону – давление в антициклоне повышенное, вращается он по часовой стрелке в северном и против часовой стрелки в южном полушарии. Антициклон стабилизирует погоду над территорией, над которой он проходит, на несколько дней устанавливается умеренная малооблачная погода, летом – жаркая, зимой – морозная. Д Общее у циклонов и антициклонов то, что они образуются только над определенными местами планеты. Так, например, антициклоны часто возникают над ледниковыми полями, и чем больше территория льда, тем более мощный антициклон может возникнуть (над Антарктидой – самый мощный, над Арктикой – средней мощности, над Гренландией – относительно слабый).



Виды ветров Существуют ветры как течения воздушных масс над гигантскими площадями: муссоны, пассаты.

Муссоны – это ветер с четко установленными периодами активности: дуют с суши на море зимой, а летом – с моря на сушу. Ветер богат влагой. Его локализацию составляет в основном Азия.

Пассаты – постоянный тропический ветер, дующий с постоянной силой вне зависимости от времени года. Время его наблюдения – круглый год. По 12балльной шкале этот ветер дует с силой 3-4 балла.

Помимо воздушных течений выделяют также местные ветра: фён, бриз, бора, сирокко.

Бриз – теплый ветер с меньшей локализацией, чем муссон или пассат: дует в ночное время суток с берега на море, днем с моря на берег. Направление может меняться несколько раз за сутки.

Фён – легкий ветер, характерный для горной местности: дует с гор на равнину.

Бора – резкий ветер, отличающийся холодностью. Его локализация – горные цепи, с них он дует на долины. Ветер может развивать достаточно большую скорость (до 9 баллов), но имеет непостоянную природу.

Сирокко – сильный южный ветер, характерный для Северной Африки, а также близлежащих регионов. Этот ветер зарождается в пустыне Сахара, несет очень жаркий и сухой воздух.

Атмосферные вихри:

Тропические циклоны – это вихри, в центре которых низкое давление;

образуются они летом и осенью над теплой поверхностью океана. Обычно тропические циклоны возникают только в низких широтах около экватора, между 5 и 20 Северного и Южного полушарий. Отсюда вихрь диаметром примерно 500-1000 км и высотой в 10-12 км начинает свой бег. Тропические циклоны широко распространены на Земле, и в различных частях света их называют по-разному: в Китае и Японии – тайфунами, на Филиппинах – бэгвиз, в Австралии – вилли-вилли, вблизи побережья Северной Америки – ураганами.

По разрушительной силе тропические циклоны могут соперничать с землетрясениями или извержениями вулканов. За один час один такой вихрь диаметром в 700 км выделяет энергию, равную 36 водородным бомбам средней мощности. В центре циклона часто бывает так называемый глаз бури – небольшая область затишья диаметром 10-30 км. Здесь малооблачная погода, небольшая скорость ветра, высокая температура воздуха и очень низкое давление, а вокруг, вращаясь по часовой стрелке, дуют ветры ураганной силы.

Их скорость может превышать 120 м/с, при этом возникает мощная облачность, сопровождаемая сильными ливнями, грозами и градом. Количество осадков, сопровождающих тропические циклоны, кажется невероятным в сравнении с интенсивностью дождей при самых сильных циклонах умеренных широт. Так, при прохождении одного урагана через Пуэрто-Рико за 6 часов выпало 26 млрд. т воды. Если разделить это количество на единицу площади, осадков будет значительно больше, чем их выпадает за год, например, в Батуми (в среднем 2700 мм).

Смерч – одно из наиболее разрушительных атмосферных явлений – огромный вертикальный вихрь высотой в несколько сотен метров над сушей и в несколько десятков метров над морем. В отличие от тропического циклона он сконцентрирован на небольшой площади: весь как бы на глазах. На берегу Черного моря можно видеть, как из центральной части мощного кучеводождевого облака, нижнее основание которого принимает форму опрокинутой воронки, вытягивается гигантский темный хобот, а навстречу ему с поверхности моря поднимается другая воронка. Если они сомкнутся, образуется огромный, быстро перемещающийся столб, вращающийся против часовой стрелки. Смерчи образуются при неустойчивом состоянии атмосферы, когда воздух в ее нижних слоях очень теплый, а в верхних – холодный. При этом происходит очень интенсивный воздухообмен, сопровождаемый вихрем огромной скорости – несколько десятков метров в секунду. Диаметр смерча может достичь нескольких сот метров, а перемещается он иногда даже со скоростью 150км/ч. Внутри вихря образуется очень низкое давление, поэтому смерч втягивает в себя все, что встречает на пути: он может переносить на большое расстояние воду, почву, камни, части построек и т.д. Известны, например, «рыбные» дожди, когда смерч из пруда или озера вместе с водой втягивал в себя и находящуюся там рыбу.





Смерчи на суше в США и Мексике называют торнадо, в Западной Европе – тромбом. Торнадо в Северной Америке довольно частое явление – здесь их в среднем возникает более 250 в год. Торнадо – самый сильный из смерчей, наблюдаемых на земном шаре, со скоростью ветра до 220 м/с.

Предвидеть образование и путь движения торнадо по суше трудно: он перемещается с огромной скоростью и очень кратковременен. Однако сеть наблюдательных пунктов сообщает в Бюро погоды о возникновении торнадо и его местонахождении. Там эти данные анализируют и передают соответствующие предупреждения.

Шквалы возникают в основном перед холодными атмосферными фронтами или вблизи центров небольших подвижных циклонов при вторжении холодных масс воздуха в теплые. Холодный воздух при вторжении вытесняет теплый, заставляя его быстро подниматься, и чем больше разность температур между встречающимся холодным и теплым воздухом (а она может превышать 10-15°), тем больше сила шквала. Скорость ветра при шквале достигает 50м/с, а длиться он может и до одного часа; он нередко сопровождается ливнем или градом. После шквала происходит заметное похолодание. Шквал может возникнуть во все сезоны года и в любое время суток, но чаще летом, когда сильнее прогревается земная поверхность.

Ветер более 29 м/с называют ураганом. Ураганные ветры чаще всего наблюдаются в зоне сближения циклона и антициклона, т.е. в областях с резким перепадом давления. Такие ветры наиболее характерны для прибрежных районов, где встречаются морские и континентальные воздушные массы, или в горах. Но бывают они и на равнинах. Ураганные ветры часты на побережьях арктических и дальневосточных морей, особенно зимой и осенью при прохождении циклонов. Когда при сильном ветре выпадает снег, возникают метели или бураны. Метелью называется перенос снега ветром. Последний часто сопровождается вихревыми движениями снежинок. Образование метелей зависит не столько от силы ветра, сколько от того, что снег является сыпучим и легким материалом, который легко поднимается ветром с земли. Отсюда метели возникают при различных скоростях ветра, иногда начиная уже с 4-6 м/с. Метели заносят снегом дороги, взлетно-посадочные полосы аэродромов, наметают громадные сугробы. Далее в табл. 3 представлены признаки ухудшения погоды.

Таблица 3 Признаки ухудшения погоды

–  –  –

5) на небе одновременно видны облака всех ярусов: кучевые, «барашки», волнистые и перистые

6) Если развившееся кучевое облако переходит в грозовое и в верхней части его образуется «наковальня», то следует ожидать града

7) утром появляются кучевые облака, которые растут и к полудню принимают форму высоких башен или гор

8) Дым идет книзу или стелется по земле Облачность Облачность – один из важных факторов, определяющих погоду и климат.

Благодаря экранирующему эффекту она препятствует как охлаждению поверхности Земли за счёт собственного теплового излучения, так и её нагреву излучением Солнца, тем самым уменьшая сезонные и суточные колебания температуры воздуха.

Облачность – количество облаков, наблюдаемое в данном месте.

Измеряется в процентах. Нулевая облачность означает, что небо безоблачно.

Облачность 100% – всё небо закрыто облаками. Облачность 30% означает, что 30% неба закрыто облаками.

В атмосфере в результате конденсации водяного пара образуются скопления продуктов конденсации – капель и кристаллов. Их называют облаками.

Облачные элементы – капли и кристаллы – настолько малы, что они уравновешиваются силой трения. Установившаяся скорость падения капель в неподвижном воздухе равна нескольким долям сантиметра в секунду, а падения кристаллов – еще меньше. При наличии турбулентного движения малые капли и кристаллы длительное время остаются во взвешенном состоянии – несколько смещаются то вниз, то вверх. Аналогичные облакам скопления непосредственно у земной поверхности называется туманом.

В основном водяной пар содержится в нижней части атмосферы – тропосфере, поэтому именно здесь на различных высотах и сосредоточено подавляющее большинство облаков. Однако нередко в стратосферу проникают перистые и кучево-дождевые облака, последние могут иногда достигать высоты 16 и более км. В стратосфере могут также возникать перламутровые облака (на высоте около 25 км), а в мезосфере – серебристые (около 80 км). К основным формам облаков относятся: облака нижнего яруса – слоистые (однородный, лишённый упорядоченной структуры, сравнительно тонкий слой), слоистокучевые (слой с ясно выраженной структурой в виде волн, гряд или крупных «пластин») и слоисто-дождевые (сплошная серая пелена большой вертикальной мощности, дающая длительные осадки в виде обложного дождя или снега);

облака среднего яруса – высоко-слоистые (сероватая или чуть синеватая пелена) и высоко-кучевые (похожие на слоисто-кучевые, но более тонкие. Облака верхнего яруса – перистые (неплотные, часто просвечивающие облака в виде отдельных параллельных или спутанных нитей), перисто-слоистые (белая или голубоватая, довольно однородная пелена) и перисто-кучевые (тонкие, полупрозрачные облака в виде ряби или скопления хлопьев) и, наконец, облака вертикального развития, имеющие сравнительно плоские основания и куполообразные вершины часто причудливых очертаний кучевые, мощнокучевые и кучево-дождевые. Имеются многочисленные разновидности основных форм облаков (рис. 33).

Рис. 33. Виды облаков и направление движения воздуха Атмосферные осадки Атмосферные осадки – вода в жидком или твердом состоянии, выпадающая из облаков или осаждающаяся из воздуха на земную поверхность.

Обязательным условием образования осадков является одновременное наличие в воздухе воды в твердом, жидком и газообразном состояниях, что чаще бывает в смешанных облаках. Это происходит только лишь тогда, когда облако поднимается вверх и охлаждается.

Виды осадков

Осадки по происхождению:

Конвективные осадки. Характерны для жаркого пояса, где в течение года происходит интенсивные нагревание, испарение воды, преобладает восходящее движение теплого и влажного воздуха (летом нередко такие процессы происходят и в умеренном поясе).

Фронтальные осадки. Образуются при встрече двух воздушных масс с разными температурами и другими физическими свойствами (типичные фронтальные осадки наблюдаются в умеренном и холодном поясах).

Орографические осадки. Горные хребты выступают в качестве препятствия на пути потоков воздуха по всей поверхности Земли. Они выжимают влагу из воздуха. Поток теплого воздуха поднимается по склону горы, охлаждаясь по мере подъема, достигает хребта – этот процесс известен как орографический подъем. Охлаждения воздуха часто приводит к большим облака, осадкам и даже грозам. Потеряв влагу, и опускаясь, минуя горную цепь, воздух снова прогревается, а его относительная влажность снижается, удаляясь от состояния насыщения. Орфографические осадки – осадки, которые выпадают из-за влияния горного рельефа местности.

Осадки по характеру выпадения:

Ливневые осадки – дождь. Интенсивные, непродолжительные, выпадающие на небольшой площади.

Обложные осадки. Средней интенсивности, равномерные, длительные – могут продолжаться целую неделю, часто выпадают на большой площади.

Моросящие осадки. Характеризуются будто взвешенными в воздухе мелкими капельками.

Метеорологическая дальность видимости Отдаленные предметы видны хуже, чем близкие, не только потому, что уменьшаются их видимые размеры. Даже и очень большие предметы на том или ином расстоянии от наблюдателя становятся плохо различимыми вследствие мутности атмосферы, сквозь которую они видны. Эта мутность обусловлена рассеянием света в атмосфере. Понятно, что она увеличивается при возрастании аэрозольных примесей в воздухе.

Метеорологическая дальность видимости является одной из характеристик прозрачности атмосферы, и ее следует отличать от реальной дальности видимости различных объектов, которая зависит не только от прозрачности атмосферы, но и от цвета объектов, их размеров, удаленности от пункта наблюдений, освещенности и фона.

Метеорологической дальностью видимости называется то наибольшее расстояние, с которого в светлое время суток можно обнаружить на фоне неба вблизи горизонта (или на фоне воздушной дымки) абсолютно четкое тело достаточно больших размеров.

Дальность видимости чаще всего определяется на глаз по определенным, заранее выбранным объектам (темным на фоне неба), расстояние до которых известно. Но имеется и ряд фотометрических приборов для определения видимости.

3.4 Понятие о гидросфере Гидросфера – прерывистая поверхностная оболочка, состоящая из воды морей и океанов, поверхностных водоемов суши, временных и постоянных водотоков, твердой воды в виде снега и льда. Наряду с поверхностной существует и подземная гидросфера, к которой относятся грунтовые и подземные, в том числе артезианские воды. Иногда воды океанов и морей объединяют в своеобразную часть гидросферы – океаносферу (Мировой океан).

В Мировом океане на долю воды приходится около 67%, в литосфере – около 30%, в материковых льдах и подземных водах – чуть более 2%, а в водоемах суши – около 1%. На суше основная масса воды сосредоточена в ледниках. В них законсервировано 70,3% всех запасов пресных вод Земли. Благодаря своей высокой отражательной способности (альбедо) ледники являются одним из важнейших современных климатообразующих факторов.

Гидросфера вместе с атмосферой являются решающим фактором в почвообразовании и формировании растительного покрова Земли и, следовательно, обусловливают ландшафтный облик планеты.

Как же появилась вода на Земле? Окончательно этот «опрос наукой еще не решен. Предполагают, что вода или выделилась сразу при образовании литосферы из верхней мантии (конденсация водяных паров вулканических извержений) или накапливалась постепенно. Вода и сейчас выделяется из магмы, попадая на поверхность планеты при извержении вулканов, при образовании океанической коры в зонах растяжения литосферных плит. Так будет происходить еще многие миллионы лет. Часть воды поступает на Землю из космоса.

Водная оболочка Земли развивалась вместе с литосферой, атмосферой и живой природой. Почти все процессы на нашей планете протекают при участии воды. Несмотря на многообразие природных вод и их разное агрегатное состояние, гидросфера едина, ибо все ее части связаны потоками океанических и морских течений, русловым, поверхностным и подземным стоком, а также атмосферным переносом.

Вода – самое удивительное вещество на свете.

3.4.1. Свойства воды Пресная вода не имеет запаха, цвета и вкуса, тогда как морская вода 1.

обладает вкусом, цветом и может иметь запах.

В естественных условиях только вода встречается в трех агрегатных 2.

состояниях: твердом (лед), жидком (вода) и газообразном (водяной пар).

Вода – универсальный растворитель: она растворяет больше солей и 3.

прочих веществ, чем любое другое вещество. Если капельку природной воды нанести на стекло и подождать, пока она испарится, то на месте капли будут видны белые разводы – это кристаллизуются растворимые в воде соли.

Вода – это химически стойкое вещество, которое трудно окислить, 4.

сжечь или разложить на составные части. Сама же вода окисляет почти все металлы и разрушает даже самые стойкие горные породы.

При замерзании вода расширяется, увеличивая свой объем примерно 5.

на 10%.

Вода обладает большой удельной теплоемкостью, т.е. способностью 6.

поглощать большое количество теплоты и сравнительно мало при этом нагреваться. Высокая теплоемкость воды и значительная потенциальная энергия ее многочисленных фазовых переходов вместе с огромной площадью зеркала воды имеют большое значение для теплового и водного режимов Земли, а также для стабилизации климата планеты.

Процессы, где участвует вода, чрезвычайно многогранны: фотосинтез растений и дыхание организмов, деятельность бактерий и организмов, генерирующих из воды (главным образом морской) для строительства своих скелетов или аккумулирующих в себе химические элементы (Са, J, Со), процессы питания и антропогенное загрязнение и многие другие.

3.4.2. Мировой океан Мировой океан или океаносфера – это единая непрерывная водная оболочка Земли, которая включает океаны и моря (рис. 34).

Рис. 34. Океан

В настоящее время выделяют пять океанов: Тихий, Атлантический, Индийский, Северный Ледовитый (Арктический по зарубежным классификациям) и Южный (Антарктический). Согласно международной классификации, насчитывается 54 моря, среди которых выделяют внутренние и окраинные.

Объем вод Мирового океана составляет 1340-1370 млн км3. Объем суши, поднимающейся над уровнем моря, составляет 1/18 объема океана. Если бы поверхность Земли была совсем ровной, океан покрывал бы ее слоем воды в 2700 м.

Воды Мирового океана составляют 96,5% объема гидросферы и покрывают 70,8% поверхности планеты (362 млн км2). Эта огромнейшая масса воды, состоящая из двух слоев – верхнего, относительно теплого, и основного, холодного с температурами 4С и ниже, обусловливает термический режим планеты. Мировой океан является глобальным аккумулятором теплоты. Он трансформирует солнечную энергию, аккумулирует ее, а при необходимости, медленно охлаждаясь, отдает часть теплоты в атмосферу, что играет важнейшую и весьма неоднозначную роль в терморегуляции планеты.

Химический состав вод Мирового океана Морская вода – особый тип природных вод. Формула воды Н2О верна и для морской воды. Однако помимо водорода и кислорода в морской воде содержатся 81 из 92 встречающихся в естественных условиях элементов (теоретически в морской воде могут быть найдены все существующие в природе элементы таблицы Менделеева). Большинство из них находится в чрезвычайно малых концентрациях. В 1 км3 морской воды содержится около 40 т растворенных твердых веществ, которые определяют ее важнейшее свойство – соленость.

Состав морской воды:

1. Твердые вещества. Больше всего в морской воде содержится хлора (1,9%), т.е. более 50% всех растворенных твердых веществ. Далее следуют: натрий (1,06%), магний (0,13%), сера (0,088%), кальций (0,040%), калий (0,038%), бром (0,0065%), углерод (0,003 %). Главные растворенные в морской воде элементы образуют соединения, основные из которых: а) хлориды (NaCl, MgCl) – 88,7%, которые придают морской воде горьковато-соленый вкус; б) сульфаты (MgSO4,

CaSO4, K2SO4) – 10,8%; в) карбонаты (СаСО3) – 0,3%. В пресной воде наоборот:

больше всего карбонатов (60,1%) и меньше всего хлоридов (5,2%).

2. Биогенные элементы (питательные вещества) – фосфор, кремний, азот и др.

3. Газы. В морской воде содержатся все атмосферные газы, но в иной пропорции, чем в воздухе: преобладает азот (63%), который в силу своей инертности не участвует в биологических процессах. Далее следуют: кислород (около 34%) и углекислый газ (около 3%), присутствуют аргон и гелий. В тех морских районах, где отсутствует кислород (например, в Черном море), образуется сероводород, который в атмосфере при нормальных условиях отсутствует.

4. Микроэлементы, присутствующие в малых концентрациях.

Температура воды и соленость определяют плотность морской воды.

Географические закономерности распределения температуры воды и солености Температура воды понижается в направлении от экватора к полюсам, а для солености характерны выраженный минимум в приэкваториальной области, два максимума в тропических широтах и пониженные значения у полюсов.



Чередование очагов пониженной и повышенной солености у экватора и в тропиках объясняется обилием атмосферных осадков в экваториальной полосе и превышением испарения над количеством осадков у северного и южного тропиков.

Температура воды с глубиной понижается для северной части Тихого океана. Эта закономерность свойственна для Мирового океана в целом, однако изменения температуры воды и солености различаются в его отдельных частях, что объясняется рядом причин (например, временем года). Наибольшие изменения происходят в верхнем слое до глубины 50-100 м. С глубиной различия стираются.

Океан переносит тепло из тропических широт в полярные. Этот перенос осуществляется при участии таких крупных течений, как Гольфстрим, но существует также и возвратный сток холодной воды в направлении тропиков.

Водные массы Водные массы – это большой объем воды, формирующийся в определенном районе Мирового океана и обладающий относительно постоянными физическими, химическими и биологическими свойствами.

Согласно В. Н. Степанову (1982), по вертикали выделяют следующие водные массы: поверхностные, промежуточные, глубинные и придонные.

Среди поверхностных водных масс выделяют экваториальные, тропические (северные и южные), субтропические (северные и южные), субполярные (субарктические и субантарктические) и полярные (арктические и антарктические) водные массы.

Поверхностные воды наиболее активно взаимодействуют с атмосферой. В поверхностном слое происходит интенсивное перемешивание вод, он богат кислородом, углекислым газом и живыми организмами. Их можно назвать водами «океанической тропосферы».

Поверхностные течения образуют два больших круговорота, разделенных противотечением в районе экватора. Водоворот северного полушария вращается по часовой стрелке, а южного – против. Ветры прилагают к поверхности океана пару сил, вращающих воду в северном полушарии по часовой стрелке, а в южном

- против нее. Большие водовороты океанических течений возникают в результате действия этой пары вращающих сил.

Большинство промежуточных, глубинных и придонных водных масс формируется из поверхностных.

Границами различных типов водных масс (поверхностных, промежуточных, глубинных и придонных) являются пограничные слои, разделяющие структурные зоны. Однотипные водные массы, расположенные в пределах одной структурной зоны, разделяются океаническими фронтами. Их значительно проще проследить у поверхностных вод, где фронты выражены наиболее ярко. Сравнительно легко подразделить промежуточные воды, заметно отличающиеся своими свойствами друг от друга.

Придонные водные массы. Они заполняют наиболее глубокие части океанов, перемещаясь по котловинам и соединяющим их подводным долинам.

придонные воды образуются в результате опускания вышележащих вод, которое, в конечном счете, вызывается поверхностной горизонтальной циркуляцией. При этом все типы придонных водных масс, кроме северо-индийских, формируются в высоких широтах одновременно с промежуточными и глубинными водами.

Волны Мирового океана

Волны регулярны и имеют некоторые общие характеристики – длину, амплитуду и период. Также отмечается скорость распространения волн.

Длина волны представляет собой расстояние между вершинами или подошвами волн, высота волны – вертикальное расстояние от подошвы до вершины, оно равно удвоенной амплитуде, период равен времени между моментами прохождения двух последовательных вершин (или подошв) через одну и ту же точку (рис. 35).

Рис. 35. Составные части волн

Высота ряби измеряется приблизительно сантиметром, а период составляет около одной секунды и меньше. Волны прибоя достигают нескольких метров в высоту при периодах от 4 до 12 с.

Океанические волны имеют разные очертания и формы.

Волны, вызванные местным ветром, называют ветровыми (рис. 36).

Рис. 36. Ветровые волны Другой тип волн – волны зыби, которые медленно качают судно и при безветренной погоде (рис. 37). Зыбь образуют волны, которые сохраняются после того, как они выйдут из области действия ветра.

–  –  –

Цунами распространяются волнами от эпицентра подводных землетрясений (рис. 38). Район воздействия волн цунами огромен.

Рис. 38. Волны Цунами Цунами связаны непосредственно с движениями земной коры.

Мелкофокусное землетрясение, которое вызывает значительные смещения коры на дне океанов, вызовет и цунами. Но столь же сильное землетрясение, не сопровождающееся сколько-нибудь заметными подвижками коры, цунами не вызовет.

Рис. 39. Возникновение и движение волн Цунами

Цунами возникает в виде одиночного импульса, передний фронт которого распространяется со скоростью мелководной волны. Исходный импульс далеко не всегда обеспечивает концентрическое распространение энергии, а с ней и волны.

3.4.3. Воды суши Воды суши, несмотря на сравнительно небольшой объем, играют огромную роль в процессах функционирования географической оболочки и жизнедеятельности организмов. Следует заметить, что не все воды суши пресные, есть соленые озера и источники.

Реки – наиболее активный представитель пресных вод суши. К рекам относят постоянные и относительно крупные водотоки. Водотоки меньших размеров называют ручьями. Рельеф, геологическое строение, климат, почвы, растительность влияют на режим рек и формируют их природный облик. Река имеет исток – место, откуда она начинается, и устье – место непосредственного впадения реки в приемный водоем (озеро, море, река). Устье может разветвляться, образуя дельту реки. Участок суши, по которому протекает река, называется руслом. Главная река и ее притоки составляют речную систему. Реки, впадающие в Мировой океан, образуют эстуарии – обширные пространства смешения речной и морской воды. Эстуарии в значительной степени находятся под влиянием океанических вод.

Характер стока рек связан с их питанием, которое бывает дождевым, снеговым, ледниковым и подземным, и определяется климатическими условиями в речном бассейне. Реки преимущественно снегового питания имеют ярко выраженное весеннее половодье и летнюю межень (Волга, Днепр, Дунай, Северная Двина, Амур и др.). Подземное питание сглаживает годовой сток. У рек с дождевым питанием максимум стока часто приходится на разные сезоны года.

Участки земной поверхности и толщи почв и грунтов, откуда река получает питание, называется водосбором.

Для каждой реки в течение года характерно чередование паводков (половодий) и низкого уровня воды (межени). Количество воды во время половодий увеличивается в десятки раз. Время проявления половодья и его продолжительность зависят от питания рек.

Важными характеристиками рек являются поверхностный русловый сток и расход воды. Под русловым стоком понимают количество воды, переносимое речным потоком за определенный отрезок времени. Твердым стоком реки считается количество твердых и растворенных веществ, перемещаемых рекой за определенный промежуток времени.

Реки производят значительную работу, размывая русло, транспортируя и отлагая продукты размыва – аллювия. Они не только механически разрушают, но и растворяют горные породы. Речные отложения образуют порой обширные аллювиальные равнины площадью в миллионы километров (Амазонская, Западно-Сибирская низменности и др.). Подсчитано, что в реках одновременно находится 2100 км3 воды, в то время как в океан стекает ежегодно 47 000 км3.

Значит, объем воды в реках обновляется приблизительно каждые 16 дней. Для сравнения укажем, что воды Мирового океана осуществляют большой круговорот примерно за 2500 лет.

Озера Озеро – естественный водоем суши с замедленным водообменом, не имеющий прямой связи с океаном. Озера имеют тектоническое, ледниковое, речное (старицы), провальное, вулканическое или искусственное происхождение. Озера часто заполненные застойной или слабо проточной водой так, как и не имеют связи с Мировым океаном.

Для его образования необходимо наличие замкнутого понижения земной поверхности (котловины). Озера занимают общую площадь приблизительно в 2 млн км2, а суммарный объем их вод превышает 176 тыс. км3. По условиям образования котловины, размерам, химическому составу вод, термическому режиму озера очень разнообразны. Немало создано и искусственных озер – водохранилищ (около 30 тыс.), объем воды в которых составляет более 5 тыс. км3. Примерно половина озерных вод – соленые, причем основная их часть сосредоточена в самом большом бессточном озере – Каспийском море (76 тыс. км3). Из пресных озер крупнейшими являются Байкал (23 тыс. км3), Танганьика (18,9 тыс. км3), Верхнее (16,6 тыс. км3). Режим озер характеризуется притоком тепла, колебаниями уровня воды, течениями, условиями водообмена, ледовитостью и др. Крупные озера во многом определяют климатические условия прилегающих территорий (например, Ладожское озеро).

Водохранилища – искусственно созданные водные ландшафты поверхностной гидросферы.

Болота Болота – это области суши, характеризующиеся избыточным увлажнением, застойным или слабо проточным режимом вод, заросшие влаголюбивой растительностью. Общая площадь болот на поверхности Земли составляет 2 млн. км2. Они располагаются в тех областях, где уровень грунтовых вод находится вблизи поверхности. По местоположению и условиям водного питания различают верховые, промежуточные, низинные и приморские болота.

Верховые болота располагаются на выровненных водоразделах, на речных террасах и на склонах возвышенностей. Они подпитываются атмосферными осадками. Промежуточные болота питаются за счет как атмосферных осадков, так и подземных вод. Низинные болота располагаются в понижениях рельефа и часто возникают на месте обмелевших и заросших озер. Питаются за счет атмосферных осадков, подземных и поверхностных вод. Приморские болота занимают низменные морские побережья в областях с влажным климатом. В областях с тропическим климатом они покрываются мангровыми зарослями и иногда затапливаются приливами. Возникновение болот связано как с климатическими условиями (избыток влаги), так и с геологическим строением территории (близость водоупорного горизонта), которые способствуют заболачиванию суши или зарастанию водоемов. В некоторых районах умеренных и субполярных широт роль водоупора выполняет вечная мерзлота.

Специфическим образованием болот является торф.

Подземные воды Подземные воды – это воды, находящиеся в горных породах в жидком, твердом или газообразном состоянии. Подземные воды относятся к числу природных ресурсов, от которых в настоящее время зависит жизнь значительной части населения земного шара. Под земной поверхностью находится примерно в 37 раз больше воды, чем во всех реках, озерах и болотах мира. Основная масса подземной воды имеет атмосферное происхождение. Однако кроме нее имеется погребенная (реликтовая) вода, сохранившаяся между частицами горных пород с тех пор, как возникли осадочные породы, и магматическая (ювениальная) вода, т.е. вода, поступающая из расплавленных магматических тел. Вода скапливается во всевозможных пустотах – каналах, трещинах, порах. Установлено, что ниже уровня грунтовых вод до глубины 4-5 км и более почти все пустоты горных пород заполнены водой. По данным глубокого бурения, вода в пустотах горных пород находится на глубине более 9,5 км, т.е. ниже среднего уровня дна Мирового океана.

Совокупность водотоков (рек, ручьев, каналов), водоемов (озер, водохранилищ) и других водных объектов (болот, ледников) составляет гидрографическую сеть.

Воды суши сильно преобразованы человеком за счет ирригации, мелиорации, распашки земель и других урбанистических процессов, в связи с чем остро обозначилась проблема питьевой воды.

Сложность ее решения заключается в том, что потребности в чистой воде растут, а ее запасы остаются прежними. Используемая в быту, в промышленных и сельскохозяйственных циклах пресная вода чаще всего возвращается в речную сеть в виде сточных вод, по-разному очищенных или неочищенных вовсе.

В областях молодой вулканической деятельности встречаются подземные термальные воды. На поверхность они изливаются в виде термальных источников и гейзеров.

Ледники Ледники формируются в местах с низкими отрицательными температурами в результате многолетнего накопления снежных масс. Они присутствуют во всех высокогорных областях, в Антарктиде, Гренландии и на полярных островах.

Ледники занимают 11% территории суши, а общий объем льда в них равен 30 млн. км3.

Высотное положение ледников зависит от климата. Наиболее низкое положение они занимают в приполярных областях и опускаются до уровня Мирового океана, образуя айсберги (Гренландия, Антарктида).

Ледники делятся на наземные ледниковые покровы, шельфовые и горные (среди последних выделяют долинные, переметные, каровые, висячие, выводные). Характерная особенность ледников – их способность в результате вязкопластичного течения и под влиянием силы тяжести перемещаться от областей питания. Скорость движения ледников сильно варьирует. В Альпах ледники перемещаются со скоростью 0,1-0,4 м/сутки, а на Памире и в Гималаях

– 2-4 м/сутки. Иногда на отдельных участках в зависимости от крутизны склона их скорость катастрофически увеличивается, достигая 150 м/сутки.

Почти четвертая часть суши занята почвенным льдом, или многолетнемерзлыми грунтами. Основная масса ледников России сосредоточена на арктических островах (Новая Земля, Северная Земля, Земля Франца-Иосифа, остров Врангеля, Новосибирские острова) и в горных районах (Большой Кавказ, Алтай, горы Камчатки, Южной и Северо-Восточной Сибири, Корякское нагорье, Саяны, Урал, Становой хребет).

Снежный покров образуется вследствие обложного или ливневого выпадения снега. Кроме снега в нем присутствуют также механические примеси и кристаллы льда. Продолжительность существования снежного покрова зависит от климатических условий.

3.5 Понятие о биосфере Биосфера – это особый объем географической оболочки, своеобразная надсфера, объединяющая практически все геосферы, где существует или существовала жизнь. В широком смысле к биосфере относят не только наружную область Земли, в которой существует жизнь, но и все сферы, в разной мере измененные жизнью. Такой смысл вкладывал в это понятие В. И. Вернадский, относивший к биосфере и верхнюю часть земной коры, включая гранитный слой. Чаще биосферой в широком смысле называют область активной современной жизни организмов, которая охватывает нижнюю часть атмосферы, гидросферу и верхнюю часть литосферы. Иногда этот слой называют биостром (термин, используемый Ф. Н. Мильковым). В узком смысле, под биосферой понимают совокупность живых организмов, населяющих земную поверхность. Это совпадает с понятием «биота» (П. Дювиньо и М. Танг).

Термин «биосфера» ввел австрийский геолог Э. Зюсс в 1875 г., понимавший ее как тонкую пленку жизни на земной поверхности. Создание целостного учения о биосфере принадлежит В. И. Вернадскому, в представлении которого биосфера не просто зона распространения жизни, а одна из геологических оболочек Земли.

Биосфера – самая крупная (глобальная) экосистема Земли, область взаимодействия живого и косного вещества на планете. Признавая существование географической оболочки как системы геосфер, биосфера как область современной и былой жизни является дополнительной объединяющей их характеристикой.

3.5.1. Распространение биосферы Биосфера охватывает нижнюю часть атмосферы, всю гидросферу и верхнюю часть литосферы Земли (рис. 40), населенные и в значительной степени преобразованные живыми организмами.

Поскольку основным фактором распространения жизни является солнечная энергия и жидкая вода, то все живые организмы распределены главным образом в верхних слоях литосферы и гидросферы, а также во всей тропосфере. Чем лучше та или иная земная оболочка пропускает солнечные лучи, тем на большую глубину она заселена живыми организмами. Однако биосфера не кончается там, куда доходит свет. Поток энергии распространяется еще дальше: из освещенных слоев в глубину моря непрестанно попадают мертвые и живые организмы, продукты их жизнедеятельности. Что-то похожее отмечается в литосфере, а в атмосфере частички живого вещества поднимаются на большие высоты.

«Пределы биосферы обусловлены прежде всего полем существования жизни», – писал В. И. Вернадский в 1926 г. Это поле особенно активной жизни асимметрично по планете и ограничено мощностью биосферы, которая в океанической области Земли составляет чуть более 17 км, а на суше уменьшается до 12 км.

Рис. 40. Строение биосферы

Установлено, что живые организмы обитают практически в любой среде, в том числе в атомных реакторах и на дне глубочайших океанических понижений в бескислородных условиях и среди химических соединений типа сероводорода, углеводородов и др. В рассеянной форме жизнь проникает в глубь Земли: по трещинам земной коры, искусственным выработкам и шахтам животные, растения и бактерии могут опускаться на глубину до 2,5-3 км и более.

3.5.2. Организация биосферы В современных учениях о Земле существует несколько классификаций живых организмов.

1. Классификация, основанная на закономерностях эволюционного развития и клеточного строения организмов.

2. Классификация, основанная на функциях, выполняемых живыми организмами в обмене веществом и энергией.

Все организмы обладают подвижностью: семена, споры, насекомые переносятся ветрами на большие расстояния, миграции птиц оцениваются в тысячи километров, миграции черепах, угрей, лососевых рыб – в тысячи морских миль.

На суше важные функции выполняют растения: в ходе фотосинтеза они воспроизводят органическое вещество и свободный кислород атмосферы.

Животные, грибы и бактерии на суше имеют гораздо меньшую массу, однако их роль в функционировании биоценозов также значительна. Каждый из видов выполняет специфическую функцию, которую не в состоянии выполнять другие.

Активнейшим стимулятором биохимических процессов являются микроорганизмы, без которых невозможна полная минерализация органического вещества. Например, они совершают доступную только им фиксацию свободного азота атмосферы, обогащая этим почву.

Основная жизнь в океане сосредоточена в приповерхностном; слое глубиной до 200 м, который обычно называют верхним деятельным слоем. Такое распределение связано, главным образом, с распространением света и количеством пищи в толще воды. Среди растительных организмов преобладают водоросли, представленные как микроскопическими формами (фитопланктон), так и крупными экземплярами, длиной до нескольких десятков метров.

Животные распространены во всех слоях океана. Среди них преобладают простейшие, моллюски, ракообразные, рыбы. Ниже глубины проникновения света растений нет, следовательно, не создается первичная органическая продукция и животные питаются остатками, поступающими сверху.

Океан предоставляет большие преимущества для своих обитателей – гидробионтов. Во-первых, морские организмы живут в более постоянных условиях, благодаря чему им не требуются особые покровы и приспособления, которые необходимы обитателям суши для защиты от резких изменений окружающих условий. Во-вторых, жизнь в океане возможна в толще воды, вплоть до самых больших глубин. Многие морские организмы весь жизненный цикл проводят, не соприкасаясь с дном. На суше лишь немногие существа способны летать и парить в воздухе, но и они для питания и размножения вынуждены опускаться на землю. В-третьих, воды океана, особенно прибрежные, характеризуются высоким плодородием, огромными запасами взвешенных и растворенных питательных веществ. Многие донные организмы (особенно беспозвоночные животные и водоросли) ведут «сидячий» образ жизни, поглощая все необходимое прямо из морской воды.

В-четвертых, плотность морской воды обеспечивает физическую поддержку обитающим в ней организмам, благодаря чему многие гидробионты не нуждаются в скелетных тканях и имеют мягкую консистенцию. Вынутые из воды, они становятся вялыми и бесформенными (например, медуза). Морская вода нейтрализует действие силы тяжести, благодаря чему в ней сохраняют плавучесть организмы с большой массой тела: гигантские кальмары достигают 30 м в длину, вес синего кита – до 150 т. На суше такие крупные организмы не могут существовать, они будут просто раздавлены весом собственного тела. По условиям существования в океане различают две среды обитания: пелагиалъ – толща воды и бенталь – дно.

По образу жизни среди обитателей океана выделяют три группы:

1) планктон – пассивно перемещающиеся скопления одноклеточных водорослей (фитопланктон) и некоторых видов животных (зоопланктон), которые связывают цепи питания поверхностных и глубинных слоев; 2) нектон – активно передвигающиеся животные (рыбы, головоногие моллюски); 3) бентос (фито- и зообентос) – обитатели моря, живущие на дне.

3.5.3. Биомасса и биопродуктивность. Эволюция биосферы Биомассой называют совокупность организмов (живых и отмерших) в экосистеме. Она может быть выражена числом особей, а также в весовых (масса) или энергетических (калориях) характеристиках.

Биопродуктивность – это скорость продуцирования (воспроизведения) биомассы. В производстве биомассы участвуют продуценты – организмы, которые посредством фото- или хемосинтеза накапливают потенциальную энергию в виде органических веществ, созданных из минеральных веществ, поставляемых абиотической средой, и консументы – организмы, которые питаются этими созданными сложными органическими веществами. Первичной продуктивностью называется скорость, с которой продуценты (в большинстве Своеобразие эволюции биосферы состоит в том, что она происходит в рамках уже сложившихся уровней организации живого вещества. При этом, характеризуя эволюцию, обычно не рассматривают проблему возникновения жизни. С точки зрения биологии, жизнь возникла в «доактуалистическую эпоху», т. е. в условиях, не воспроизводимых в настоящее время.

Основными вехами эволюции биосферы являются:

быстрое (в геологическом масштабе времени) освоение жизнью земного пространства;

постепенное преобразование геологических и геохимических круговоротов вещества в биогеологические и биогеохимические;

преобразование первичной атмосферы и стабилизация ее газового состава;

замена восстановительного (бескислородного) фона геохимической среды окислительным;

возникновение почвообразовательного процесса и создание вследствие этого почвенной структуры;

детерминация химической активности природных вод (создание зональной структуры гидросферы и вод зоны гипергенеза).

Центральным событием эволюции было возникновение окислительной среды, что повлекло за собой ряд изменений: уменьшение кислотности вод и превращение среды Мирового океана в щелочную, изменение подвижности химических элементов (в том числе в связи с почвообразованием), обогащение кислородом всех оболочек, примыкающих к земной поверхности (по мнению В. И. Вернадского, даже гранитная оболочка образовалась как таковая благодаря окислительной среде биосферы).

Показателем эволюции биосферы служит изменение способности живого вещества концентрировать химические элементы, соединения и энергию (концентрационная функция живого вещества).

Тенденциями эволюции являются: увеличение разнообразия жизненно необходимых химических элементов, изменение соотношений между ними (например, образование рудных месторождений в определенные эпохи – железорудных в протерозое, марганцевых в неогене, эвапоритовых в девоне и перми и др.), усложнение строения и функциональных свойств живых организмов, что привело к биоразнообразию.

–  –  –

Как наука Землеведение прошло длительный путь исторического развития.

Проблемы строения Земли волновали ученых с глубокой древности. Уже в древнем Китае, Египте, Вавилоне составлялись изображения поверхности Земли.

Планы города Вавилон, побережья Средиземного моря сохранились до сих пор.

Землеописание, т. е. география (от. гео – греч. «Земля» и графил – «описание») активно разрабатывалось в Древней Греции. Многих ученых античного периода интересовал вопрос о форме Земли. Высказывались различные идеи, в частности, что Земля находится на трех слонах, которые стоят на черепахе, плавающей в океане, и другие.

Выдающийся древнегреческий ученый Аристотель (384-322 гг. до н.э.) в труде «Метеорологика» высказал гениальные идеи о строении Земли, ее шарообразной форме, о существовании разных «сфер», проникающих друг в друга, круговороте воды, морских течениях, зонах Земли, причинах землетрясений и т. д. Современные идеи землеведения во многом подтверждают его догадки.

Многих ученых интересовал также вопрос о размерах Земли. Наиболее точные измерения были проведены Эратосфеном Киренским – древнегреческим ученым (около 276-194 до н.э.). Им были заложены основы математической географии. Он впервые вычислил окружность Земли по меридиану, и, что удивительно, полученные цифры близки современным вычислениям – 40 тыс.

км. Эратосфен впервые употребил термин «географика».

Античная география выполняла в основном описательные функции.

Значительную роль в развитии этого направления сыграли работы древнегреческого географа и астронома Клавдия Птоломея (около 90-168 до н.э.). В своем труде «Руководство по географии», включающем восемь томов, он предлагает различать географию и хорографию. География имеет дело с изображением всей известной части Земли и всем, что находится на ней.

Хорография занимается подробным описанием местности, т. е. своего рода краеведением, по современным понятиям. Птоломей составлял различные карты, и именно его считают «отцом» картографии. Им были предложены несколько новых картографических проекций. Наибольшую известность принесла ему идея о геоцентрическом устройстве мира, считавшая центром мироздания Землю, вокруг которой вращаются Солнце и другие планеты.

Считается, что труды Птоломея завершают античный период в развитии географии, занимавшейся тогда в основном описанием вновь открытых земель.

В эпоху Великих географических открытий (XVI-XVII вв.) проявилось другое направление – аналитическое.

Началом формирования землеведения как самостоятельной научной дисциплины считается выход в свет в Голландии «Всеобщей географии»

Бернхарда Варениуса в 1650 г. В этой работе представлены достижения в области астрономии и создания гелиоцентрической системы мира (Н. Коперник, Г. Галилей, Дж. Бруно, И. Кеплер). Наряду с этим обобщены результаты Великих географических открытий. Предметом изучения землеведения, по Б. Варениусу, является земноводный круг, состоящий из земли, воды, атмосферы, проникающих друг в друга. Однако значение человека и его деятельности было исключено.

Ведущей идеей этого периода был анализ взаимосвязей между различными частями природы. В разработке этой идеи большое значение имели работы Александра фон Гумбольдта (1769-1859), выдающегося немецкого ученого-энциклопедиста, натуралиста, путешественника. Есть мнение, что труды Б. Варениуса являются началом развития общего землеведения, а достижения Гумбольдта – это одна из замечательных вершин.

А. Гумбольдт много путешествовал, изучал природу Европы, Центральной и Южной Америки, Урала, Сибири. Именно в его трудах доказано значение анализа взаимосвязей в качестве основной идеи всей географической науки.

Анализируя взаимосвязи рельефа, климата, животного мира и растительности, А. Гумбольдт заложил основы географии растений и географии животных, учения о жизненных формах, климатологии, общего землеведения обосновал идею вертикальной и широтной зональности. В его работах «Путешествие в равноденственные области Нового света», т. 1-30 (1807-1834) и «Космос»

развивается идея о земной поверхности как особой оболочке, где не только существует взаимосвязь, но и взаимодействие земли, воздуха, воды, наблюдается единство неорганической и органической природы. А. Гумбольдт впервые употребляет термины «жизнесфера», что по смыслу соответствует современному «биосфера», и «сфера разума», соответствующий «ноосфере».

Книга А. Гумбольдта «Картины природы» никого не может оставить равнодушным, поскольку в ней сочетаются достоверные факты и высокохудожественные описания природы. Его считают основоположником художественного ландшафтоведения.

Основателем первой кафедры географии в Берлинском университете является живший в одно время с А. Гумбольдтом Карл Риттер (1779-1859). В своих широко известных трудах по землеведению он рассматривал Землю как жилище рода человеческого, существующего благодаря силе Божественного провидения. К. Риттер ввел в науку термин «землеведение». Он пытался количественно определить пространственные соотношения между разными объектами.

В многотомном труде «Земля и люди. Всеобщая география» Э. Реклю (1830-1905) достаточно подробно описывает большинство стран мира. Он считается основоположником современного страноведения.



Pages:     | 1 |   ...   | 2 | 3 || 5 | 6 |
Похожие работы:

«Министерство образования и науки Российской Федерации Иркутский государственный технический университет С.С. Тимофеефа, Т.И. Дроздова, Г.В. Плотникова, В.Ф. Гольчевский ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ РАЗВИТИЯ И ТУШЕНИЯ ПОЖАРА Учебное пособие Издательство Иркутского государственного технического УДК 614.841 ББК Т Рекомендовано к изданию редакционно-издательским советом ИрГТУ Рецензенты: начальник ГУ СЭУ ФПС «Испытательная пожарная лаборатория» по Иркутской области В.Ю.Селезнев; к.т.н., доцент кафедры...»

«Промышленный и технологический форсайт Российской Федерации на долгосрочную перспективу В. Н. Княгинин Промышленный дизайн Российской Федерации: возможность преодоления «дизайн-барьера» Рекомендовано Учебно-методическим объединением по университетскому политехническому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки магистров «Инноватика» Санкт-Петербург Издательство Политехнического университета Рецензенты: Доктор...»

«Министерство образования и науки РФ ФГБОУ ВПО Ангарская государственная техническая академия _ И.Г. Голованов ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ И ПОДСТАНЦИИ Методические указания к практическим занятиям и самостоятельной работе студентов Для студентов всех форм обучения по направлению подготовки «Электроэнергетика и электротехника» Ангарск 2014 Голованов И.Г. Электрические станции и подстанции. Методические указания к практическим занятиям и самостоятельной работе/ Голованов И.Г. – г. Ангарск: Изд-во АГТА,...»

«Министерство образования и науки РФ ФГБОУ ВПО Ангарская государственная техническая академия ТРЕБОВАНИЯ ПО ВЫПОЛНЕНИЮ, ОФОРМЛЕНИЮ И ЗАЩИТЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ Методические указания Издательство Ангарской государственной технической академии УДК 378.1 Требования по выполнению, оформлению и защите выпускной квалификационной работы: метод. указания / сост.: Ю.В. Коновалов, О.В. Арсентьев, Е.В. Болоев, Н.В. Буякова. – Ангарск: Изд-во АГТА, 2015. – 63 с. Методические указания...»

«Министерство образования и науки РФ ФГБОУ ВПО Ангарская государственная техническая академия ТРЕБОВАНИЯ ПО ВЫПОЛНЕНИЮ, ОФОРМЛЕНИЮ И ЗАЩИТЕ ВЫПУСКНОЙ КВАЛИФИКАЦИОННОЙ РАБОТЫ Методические указания Издательство Ангарской государственной технической академии УДК 378.1 Требования по выполнению, оформлению и защите выпускной квалификационной работы: метод. указания / сост.: Ю.В. Коновалов, О.В. Арсентьев, Е.В. Болоев, Н.В. Буякова. – Ангарск: Изд-во АГТА, 2015. – 63 с. Методические указания...»

«Министерство образования и науки РФ ФГБОУ ВПО Ангарская государственная техническая академия _ И.Г. Голованов ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ И ПОДСТАНЦИИ Методические указания для курсового проектирования Для студентов всех форм обучения по направлению подготовки «Электроэнергетика и электротехника» Ангарск 2014 Голованов И.Г. Электрические станции и подстанции. Методическое пособие для курсового проектирования / И.Г. Голованов. – г. Ангарск, 2014. – 72 с. Включает методику и практическое решение задач...»

«Иркутский государственный технический университет Научно-техническая библиотека Автоматизированная система книгообеспеченности учебного процесса Рекомендуемая литература по учебной дисциплине Автомобили № п/п Краткое библиографическое описание Электронный Гриф Полочный Кол-во экз. индекс 1) Автомобили : курс лекций / А. Г. Осипов ; Иркут. гос. техн. ун-т dsk-567 146 экз. Ч. 2Основы теории эксплуатационных свойств АТС, 2004. 1 электрон. гиб. диск (дискета) 2) Автомобили : метод. указания по...»

«Иркутский государственный технический университет Научно-техническая библиотека Автоматизированная система книгообеспеченности учебного процесса Рекомендуемая литература по учебной дисциплине Автомобили № п/п Краткое библиографическое описание Электронный Гриф Полочный Кол-во экз. индекс 1) Автомобили : курс лекций / А. Г. Осипов ; Иркут. гос. техн. ун-т dsk-567 146 экз. Ч. 2Основы теории эксплуатационных свойств АТС, 2004. 1 электрон. гиб. диск (дискета) 2) Автомобили : метод. указания по...»

«МИНОБРНАУКИ РОССИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Ухтинский государственный технический университет» (УГТУ) Сборник задач по дискретной математике Часть 1 Методические указания Ухта, УГТУ, 2015 УДК [512.64+514/742.2](075.8) ББК 22.14 я7 Ж 72 Жилина, Е. В. Ж 72 Сборник задач по дискретной математике. Часть 1 [Текст] : метод. указания / Е. В. Жилина, Е. В. Хабаева. – Ухта : УГТУ, 2015. – 30 с. Методические указания полностью...»

«СТО 027-2015 Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования ИРКУТСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ С Т А Н Д А Р Т О Р Г А Н И З А Ц И И СИСТЕМА МЕНЕДЖМЕНТА КАЧЕСТВА Учебно-методическая деятельность. Общие требования к организации и проведению лабораторных работ Учебно-методическая деятельность. СТО 027-2015 ИРНИТУ Общие требования к организации и проведению лабораторных работ...»

«Министерство образования Российской Федерации Архангельский государственный технический университет Институт экономики, финансов и бизнеса Мировая экономика Учебно-методическое пособие по курсу «Мировая экономика» Архангельск Рассмотрено и рекомендовано к изданию методической комиссией Института экономики, финансов и бизнеса АГТУ 26 июня 2000 г. Составитель Н.Н.Тюкина, доцент Рецензенты: Ю.Ф.Лукян, проф., д-р ист. наук; Т.Я.Шилова, доц., канд. экон. наук Тюкина Н.Н. Мировая экономика:...»

«Федеральное агентство по образованию Архангельский государственный технический университет НАУЧНЫЕ ИССЛЕДОВАНИЯ В ДЕРЕВООБРАБОТКЕ Методические указания к курсовой и дипломной работам Рассмотрены и рекомендованы к изданию методической комиссией факультета механической технологии древесины Архангельского государственного технического университета 5 ноября 2008 года Составитель А.Д. Голяков, канд. техн. наук, проф. кафедры лесопильно-строгальных производств Рецензент Г.П. Бородина, доц. кафедры...»

«ФЕДЕРАЛЬНАЯ СЛУЖБА ПО НАДЗОРУ В СФЕРЕ ОБРАЗОВАНИЯ И НАУКИ Методические рекомендации по подготовке и проведению итогового сочинения (изложения) для образовательных организаций, реализующих образовательные программы среднего общего образования Москва ОГЛАВЛЕНИЕ 1. ОБЩИЙ ПОРЯДОК ПОДГОТОВКИ И ПРОВЕДЕНИЯ ИТОГОВОГО СОЧИНЕНИЯ (ИЗЛОЖЕНИЯ) 2. ИНСТРУКЦИЯ ДЛЯ РУКОВОДИТЕЛЯ ОБРАЗОВАТЕЛЬНОЙ ОРГАНИЗАЦИИ 10 3. ИНСТРУКЦИЯ ДЛЯ ТЕХНИЧЕСКОГО СПЕЦИАЛИСТА ПРИ ПРОВЕДЕНИИ ИТОГОВОГО СОЧИНЕНИЯ (ИЗЛОЖЕНИЯ) 15 4....»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Кузбасский государственный технический университет имени Т.Ф. Горбачева» Филиал КузГТУ в г. Междуреченске Кафедра социально–гуманитарных дисциплин ФИЗИЧЕСКАЯ КУЛЬТУРА Методические указания к самостоятельной работе для студентов 2 курса очной формы обучения специальности и направлений подготовки: 080100.62 «Экономика» 0801001.65...»

«Министерство образования и науки Российской Федерации Филиал федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Самарский государственный технический университет» в г. Сызрани Гусева Н.В. Гаршина О.П.УПРАВЛЕНИЕ ЗАТРАТАМИ И ЦЕНООБРАЗОВАНИЕ Учебное пособие Сызрань 2013 Печатается по решению НМС инженерно-экономического факультета филиала ФГБОУ ВПО Самарского государственного технического университета в г. Сызрани. Рассмотрено и утверждено...»

«МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ТЮМЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» Физико-технический институт Кафедра микрои нанотехнологий Сергей Юрьевич Удовиченко ДИАГНОСТИКА И МЕТОДЫ ИССЛЕДОВАНИЯ НАНОМАТЕРИАЛОВ И НАНОСТРУКТУР Учебно-методический комплекс Рабочая программа для аспирантов специальности 03.06.01 Физика и астрономия (Физика и технология наноструктур, атомная и...»

«Образовательная программа основного общего образования Второй Санкт-Петербургской Гимназии рабочий вариант 2015 год СОДЕРЖАНИЕ 1. ЦЕЛЕВОЙ РАЗДЕЛ ПРИМЕРНОЙ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОСНОВНОГО ОБЩЕГО ОБРАЗОВАНИЯ 1.1. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА 1.1.1.ВВЕДЕНИЕ 1.1.2.ОБЩАЯ ХАРАКТЕРИСТИКА ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОСНОВНОГО ОБУЧЕНИЯ 1.1.3.НОРМАТИВНО-ПРАВОВОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОСНОВНОГО ОБУЧЕНИЯ 1.1.4.ЦЕЛИ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ОСНОВНОГО ОБУЧЕНИЯ 1.1.5.ПРИНЦИПЫ ФОРМИРОВАНИЯ...»

«Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) Е. Ф. Крейнин, Н. Д. Цхадая НЕФТЕГАЗОПРОМЫСЛОВАЯ ГЕОЛОГИЯ Учебное пособие Допущено Учебно-методическим объединением вузов Российской Федерации по нефтегазовому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлению подготовки специалистов 130500 «Нефтегазовое дело» Ухта...»

«ЛИСТ СОГЛАСОВАНИЯ от 16.06.2015 Рег. номер: 2760-1 (15.06.2015) Дисциплина: Дифференциальные уравнения Учебный план: 28.03.01 Нанотехнологии и микросистемная техника/4 года ОДО Вид УМК: Электронное издание Инициатор: Салова Елена Владимировна Автор: Салова Елена Владимировна Кафедра: Кафедра математического моделирования УМК: Физико-технический институт Дата заседания УМК: 01.06.2015 Протокол заседания №8 УМК: Дата полуДата согласоРезультат согласоваСогласующие ФИО Комментарии чения вания ния...»

«Министерство образования и науки РФ ФГБОУ ВПО Ангарская государственная техническая академия _ И.Г. Голованов ЭЛЕКТРИЧЕСКИЕ СТАНЦИИ И ПОДСТАНЦИИ Методические указания к лабораторным работам Для студентов всех форм обучения по направлению подготовки «Электроэнергетика и электротехника» Ангарск 2014 Голованов И.Г. Электрические станции и подстанции. Методические указания к лабораторным работам/ Голованов И.Г. – г. Ангарск: Изд-во АГТА, 2014. – 37с. Методические указания содержат материал о...»







 
2016 www.metodichka.x-pdf.ru - «Бесплатная электронная библиотека - Методички, методические указания, пособия»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.